7,282 research outputs found

    Vibrational thermodynamics: coupling of chemical order and size effects

    Get PDF
    The effects of chemical order on the vibrational entropy have been studied using first-principles and semi-empirical potential methods. Pseudopotential calculations on the Pd_3V system show that the vibrational entropy decreases by 0.07k_B upon disordering in the high-temperature limit. The decrease in entropy contradicts what would be expected from simple bonding arguments, but can be explained by the influence of size effects on the vibrations. In addition, the embedded-atom method is used to study the effects of local environments on the entropic contributions of individual Ni and Al atoms in Ni_3Al. It is found that increasing numbers of Al nearest neighbours decreases the vibrational entropy of an atom when relaxations are not included. When the system is relaxed, this effect disappears, and the local entropy is approximately uniform with increasing number of Al neighbours. These results are explained in terms of the large size mismatch between Ni and Al. In addition, a local cluster expansion is used to show how the relaxations increase the importance of long-range and multisite interactions

    One Dimensional Oxygen Ordering in YBa2Cu3O(7-delta)

    Full text link
    A model consisting of oxygen-occupied and -vacant chains is considered, with repulsive first and second nearest-neighbor interactions V1 and V2, respectively. The statistical mechanics and the diffraction spectrum of the model is solved exactly and analytically with the only assumption V1 >> V2. At temperatures T ~ V1 only a broad maximum at (1/2,0,0) is present, while for ABS(delta - 1/2) > 1/14 at low enough T, the peak splits into two. The simple expression for the diffraction intensity obtained for T << V1 represents in a more compact form previous results of Khachaturyan and Morris[1],extends them to all delta and T/V2 and leads to a good agreement with experiment. [1] A.G.Khachaturyan and J.W.Morris, Jr., Phys.Rev.Lett. 64,76(1990)Comment: 13 pages,Revtex,3 figures available upon request but can be plotted using simple analytical functions,CNEA-CAB 92/04

    CO oxidation on Pd(100) at technologically relevant pressure conditions: A first-principles kinetic Monte Carlo study

    Full text link
    The possible importance of oxide formation for the catalytic activity of transition metals in heterogenous oxidation catalysis has evoked a lively discussion over the recent years. On the more noble transition metals (like Pd, Pt or Ag) the low stability of the common bulk oxides suggests primarily sub-nanometer thin oxide films, so-called surface oxides, as potential candidates that may be stabilized under gas phase conditions representative of technological oxidation catalysis. We address this issue for the Pd(100) model catalyst surface with first-principles kinetic Monte Carlo (kMC) simulations that assess the stability of the well-characterized (sqrt{5} x sqrt{5})R27 surface oxide during steady-state CO oxidation. Our results show that at ambient pressure conditions the surface oxide is stabilized at the surface up to CO:O2 partial pressure ratios just around the catalytically most relevant stoichiometric feeds (p(CO):p(O2) = 2:1). The precise value depends sensitively on temperature, so that both local pressure and temperature fluctuations may induce a continuous formation and decomposition of oxidic phases during steady-state operation under ambient stoichiometric conditions.Comment: 13 pages including 5 figures; related publications can be found at http://www.fhi-berlin.mpg.de/th/th.htm

    Coarse-graining protein energetics in sequence variables

    Full text link
    We show that cluster expansions (CE), previously used to model solid-state materials with binary or ternary configurational disorder, can be extended to the protein design problem. We present a generalized CE framework, in which properties such as energy can be unambiguously expanded in the amino-acid sequence space. The CE coarse grains over nonsequence degrees of freedom (e.g., side-chain conformations) and thereby simplifies the problem of designing proteins, or predicting the compatibility of a sequence with a given structure, by many orders of magnitude. The CE is physically transparent, and can be evaluated through linear regression on the energies of training sequences. We show, as example, that good prediction accuracy is obtained with up to pairwise interactions for a coiled-coil backbone, and that triplet interactions are important in the energetics of a more globular zinc-finger backbone.Comment: 10 pages, 3 figure

    Reliable First-Principles Alloy Thermodynamics via Truncated Cluster Expansions

    Full text link
    In alloys cluster expansions (CE) are increasingly used to combine first-principles electronic-structure and Monte Carlo methods to predict thermodynamic properties. As a basis-set expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well-defined and did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets that provides reliable thermodynamics. We then exemplify its importance in Ni3_3V, where the CE has failed unpredictably, and now show agreement to a range of measured values, predict new low-energy structures, and explain the cause of previous failures.Comment: 4 pages, 2 figure

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Hybrid expansions for local structural relaxations

    Full text link
    A model is constructed in which pair potentials are combined with the cluster expansion method in order to better describe the energetics of structurally relaxed substitutional alloys. The effect of structural relaxations away from the ideal crystal positions, and the effect of ordering is described by interatomic-distance dependent pair potentials, while more subtle configurational aspects associated with correlations of three- and more sites are described purely within the cluster expansion formalism. Implementation of such a hybrid expansion in the context of the cluster variation method or Monte Carlo method gives improved ability to model phase stability in alloys from first-principles.Comment: 8 pages, 1 figur

    Theory of temperature dependence of the Fermi surface-induced splitting of the alloy diffuse-scattering intensity peak

    Full text link
    The explanation is presented for the temperature dependence of the fourfold intensity peak splitting found recently in diffuse scattering from the disordered Cu3Au alloy. The wavevector and temperature dependence of the self-energy is identified as the origin of the observed behaviour. Two approaches for the calculation of the self-energy, the high-temperature expansion and the alpha-expansion, are proposed. Applied to the Cu3Au alloy, both methods predict the increase of the splitting with temperature, in agreement with the experimental results.Comment: 4 pages, 3 EPS figures, RevTeX, submitted to J. Phys. Condens. Matter (Letter to the Editor

    Static displacements and chemical correlations in alloys

    Full text link
    Recent experiments in metallic solid solutions have revealed interesting correlations between static pair-displacements and the ordering behavior of these alloys. This paper discusses a simple theoretical model which successfully explains these observations and which provides a natural framework for analyzing experimental measurements of pair-displacements and chemical correlations in solid solutions. The utility and scope of this model is demonstrated by analyzing results of experiments on NiFeNi-Fe and CrFeCr-Fe alloys and results of simulations of CuAuCu-Au and CuAgCu-Ag alloys.Comment: 12 page
    corecore